概率论
probability theory
研究
随机现象数量规律的
数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的
概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。
大数定律及
中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。
的起源与
赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolamo Carda501——1576)开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,有人对博弈中的一些问题发生争论,其中的一个问题是“赌金分配问题”,他们决定请教法国数学家
帕斯卡(Pascal)和
费马(Fermat)基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题。他们对这个问题进行了认真的讨论,花费了3年的思考,并zui终解决了这个问题,这个问题的解决直接推动了的产生。
随着18、19世纪科学的发展,人们注意到在某些
生物、
物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的被应用到这些领域中;同时这也大大推动了本身的发展。使成为数学的一个分支的奠基人是瑞士数学家j.
伯努利,他建立了中*个极限定理,即伯努利大数定律,阐明了事件的
频率稳定于它的概率。随后a.de
棣莫弗和p.s.
拉普拉斯 又导出了第二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《
分析的概率理论》,明确给出了概率的古典定义,并在中引入了更有力的分析工具,将推向一个新的发展阶段。19世纪末,俄国数学家p.l.
切比雪夫、a.a.马尔可夫、a.m.
李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从
正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。
如何定义概率,如何把建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下,苏联数学家
柯尔莫哥洛夫1933年在他的《基础》一书中*次给出了概率的测度论的定义和一套严密的公理体系。他的
公理化方法成为现代的基础,使成为严谨的数学分支,对的迅速发展起了积极的作用。
概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了,并使之逐步发展成一门严谨的
学科。现在,概率与统计的方法日益渗透到各个领域,并广泛应用于
自然科学、
经济学、
医学、
金融保险甚至
人文科学中 。